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A B S T R A C T   

Most cognitive processes are studied using abstract or synthetic stimuli with specific features to fully control 
what is presented to subjects. However, recent studies have revealed enhancements of cognitive capacities (such 
as working memory) when processing naturalistic versus abstract stimuli. Using abstract stimuli constructed 
from distinct visual features (e.g., color and shape), we have recently shown that human subjects can learn 
multidimensional stimulus-reward associations via initially estimating reward value of individual features 
(feature-based learning) before gradually switching to learning about reward value of individual stimuli (object- 
based learning). Here, we examined whether similar strategies are adopted during learning about naturalistic 
stimuli that are clearly perceived as objects (instead of a combination of features) and contain both task-relevant 
and irrelevant features. We found that similar to learning about abstract stimuli, subjects initially adopted 
feature-based learning more strongly before transitioning to object-based learning. However, there were three 
key differences between learning about naturalistic and abstract stimuli. First, compared with abstract stimuli, 
the initial learning strategy was less feature-based for naturalistic stimuli. Second, subjects transitioned to ob-
ject-based learning faster for naturalistic stimuli. Third, unexpectedly, subjects were more likely to adopt fea-
ture-based learning for naturalistic stimuli, both at the steady state and overall. These results suggest that despite 
the stronger tendency to perceive naturalistic stimuli as objects, which leads to greater likelihood of using object- 
based learning as the initial strategy and a faster transition to object-based learning, the influence of individual 
features on learning is stronger for these stimuli such that ultimately the object-based strategy is adopted less. 
Overall, our findings suggest that feature-based learning is a general initial strategy for learning about reward 
value of all types of multi-dimensional stimuli.   

1. Introduction 

A hallmark of human cognition is the ability to attribute reward 
outcomes to cues or events that precede them, or to choices that lead to 
those reward outcomes. Attributing reward outcomes to stimuli and 
actions allows the brain to learn and compute the so-called stimulus and 
action values, respectively, which we collectively refer to as “reward 
value” for simplicity. Choices faced in the real world, however, are 
often objects consisting of many different features or attribute dimen-
sions (e.g., color, shape, texture, etc.), each of which could potentially 
take many values and carry different information about reward out-
comes. 

Learning about multi-dimensional stimuli is not a trivial problem 

given that humans and other animals have limited cognitive abilities in 
terms of the number of features or objects that can be held in working 
memory or attended at a time. In addition, the set of possible associa-
tions grows supra-linearly as the dimensionality of attributes increases, 
which is often referred to as the “curse of dimensionality” (Barto & 
Mahadevan, 2003; Diuk et al., 2013; Hastie et al., 2001; Sutton & Barto, 
1998). It has been proposed that humans overcome the curse of di-
mensionality by constructing a simplified representation of the stimuli 
and learning only a small subset of features (Niv et al., 2015; Wilson & 
Niv, 2012), or by extracting a set of rules to estimate reward value of 
options based on their features (Braun et al., 2010; Dayan & Berridge, 
2014; Gershman & Niv, 2010). We have recently shown that during 
learning about multi-dimensional stimuli, humans initially adopt 
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feature-based learning (i.e., learn reward value of individual features 
shared between different options) to tackle the curse of dimensionality 
before gradually transitioning to learning reward value of individual 
stimuli, which we refer to as object-based learning (Farashahi et al., 
2018; Farashahi, Rowe, et al., 2017). 

Most studies of reward learning for multi-dimensional stimuli (in-
cluding ours), however, have focused on abstract stimuli, such as 
fractals, colored shapes, Gabor patches, etc. (Farashahi, Rowe, et al., 
2017; Niv et al., 2015; Oemisch et al., 2019; Wilson & Niv, 2012;  
Wunderlich et al., 2011). These simple stimuli have been adopted to 
avoid the complexity related to real-world stimuli and better control 
what is provided to the subjects in the experiments. Although this ap-
proach has led to great progress in understanding reward-based 
learning, it remains unclear whether findings based on abstract stimuli 
generalize to naturalistic stimuli. 

Recent work using naturalistic stimuli has provided evidence that 
some cognitive abilities such as working memory and visual search are 
enhanced when processing real-world objects rather than abstract sti-
muli (Brady et al., 2016; Brady et al., 2019; Spachtholz & Kuhbandner, 
2017). In addition, there is also evidence that naturalistic stimuli can 
evoke a faster response compared to abstract stimuli (Arntzen & Lian, 
2010; Battistoni, Kaiser, Hickey, & Peelen, 2020). These findings are 
significant because both working memory and visual search can con-
tribute to reward learning. For example, limited capacity of working 
memory has been shown to decrease the speed of learning (Collins 
et al., 2014; Collins et al., 2017; Collins & Frank, 2012; Otto et al., 
2013). In addition, analyses of visual search between abstract and 
naturalistic stimuli suggest that naturalistic stimuli tend to be processed 
faster because they are perceived to be more salient (Battistoni et al., 
2020; Kaiser et al., 2016; Thorpe et al., 1996). Increased saliency of 
naturalistic stimuli may lead to more object-based learning when 
tackling the curse of dimensionality. Together, these findings suggest 
that using naturalistic stimuli could lead to an overall improvement in 
learning and/or could bias learning strategy toward object-based 
learning. 

To test these alternative hypotheses and further explore learning 
about reward value of naturalistic stimuli, here, we examined learning 
in a multi-dimensional environment that resembles naturalistic settings. 
Similar to our previous study (Farashahi, Rowe, et al., 2017), human 
subjects learned reward value of multi-dimensional visual stimuli 
through feedback. To construct naturalistic stimuli, we used photos of 
athletic shoes with color and shoe type as the two task-relevant fea-
tures. We found that similar to abstract stimuli, subjects initially 
adopted feature-based learning before systematically transitioning to 
object-based learning. We also observed three key differences in 
learning about naturalistic versus abstract stimuli. First, subjects in-
itially adopted the feature-based strategy less often when learning 
about naturalistic stimuli. Second, the transition from feature-based to 
object-based learning was faster for naturalistic stimuli. Third, subjects 
were less likely to use the object-based strategy for naturalistic than 
abstract stimuli both at the steady state and overall. 

2. Materials and methods 

2.1. Subjects 

All subjects gave written informed consent prior to participating in 
the experiment in accordance with the procedures approved by the 
Dartmouth College Institutional Review Board. No subject had a history 
of neurological or psychiatric illness. A total of 46 subjects (29 females) 
were recruited from the Dartmouth College student population (ages 
18–22 years). Among them, 23 subjects (15 females) performed two 
sessions of the experiment that involved learning about naturalistic 
stimuli only (first cohort of subjects). The other 23 subjects (second 
cohort of subjects) performed four sessions of the experiment that in-
volved learning about naturalistic or abstract stimuli: two sessions with 

naturalistic stimuli on one day and two sessions with abstract stimuli on 
another day. Data in the first cohort of subjects was obtained to com-
pare learning about naturalistic stimuli with our previous study on 
abstract stimuli (Farashahi, Rowe, et al., 2017). We then collected data 
from the second cohort of subjects to perform within-subject compar-
isons and to have identical task design between naturalistic and abstract 
stimuli. 

Due to the learning nature of our experimental paradigm, we used a 
performance threshold to exclude subjects whose performance––de-
fined by the average probability of choosing the more rewarding sti-
mulus in each trial––were not distinguishable from chance level. More 
specifically, we excluded subjects whose average performance was 
below 0.5439 (equal to 2 s.e.m. from chance level of 0.5 based on the 
average of 576 trials after excluding the first 30 trials of each session). 
This resulted in the exclusion of 5 out of 23 participants in the first 
cohort of subjects and 3 out of 23 participants in the second cohort of 
subjects. The data from the remaining 38 subjects were used for the 
results presented here. We did not perform data analysis on the ex-
cluded subjects due to the small sample size (8 subjects). All data used 
in this manuscript can be downloaded from the Journal's website. 

Subjects were compensated with “t-points” (1 t-point/h), which are 
extra credit points for classes within the Department of Psychological 
and Brain Sciences at Dartmouth College. Based on their performance, 
subjects were additionally rewarded up to $10 per hour. The experi-
ment was written in MATLAB using the Psychophysics Toolbox Version 
3 (Brainard, 1997) and presented using an OLED monitor. 

2.2. Stimuli 

We used both naturalistic and abstract stimuli. These stimuli were 
used in both the choice and estimation tasks described below. For 
naturalistic stimuli, we used pictures of shoes worn for different sports 
and outdoor activities. These stimuli had two task-relevant features for 
assigning reward probabilities: type of shoe (soccer shoe, basketball 
shoe, etc.) and color (blue, red, etc.; Fig. 1c). There were two possible 
sets of naturalistic stimuli (Fig. 1c left and right panels), each con-
taining 9 pictures of shoes (3 shoe types × 3 colors). The order in which 
these two sets were used in the two experimental sessions was ran-
domly determined for each participant. 

For abstract stimuli, we used colored shapes similar to those of our 
previous study (Farashahi, Rowe, et al., 2017). Specifically, abstract 
stimuli were drawn from a set of 9 objects that were constructed using 
combinations of three distinct patterns and three distinct shapes. For 
each subject and each session, three patterns and shapes were selected 
randomly and without replacement from a total of eight patterns and 
eight shapes (Fig. 1e). Importantly, we used the same reward prob-
abilities for the task with abstract stimuli and the task with naturalistic 
stimuli. 

2.3. Experimental procedure 

Overall, the experimental paradigm was identical to Experiment 3 
in Farashahi, Rowe, et al. (2017) except that subjects were required to 
learn a total of 9 (instead of 8) stimuli. Each participant in the first 
cohort of subjects completed two sessions of the task with naturalistic 
stimuli in one day. Participants in the second cohort of subjects com-
pleted two sessions of the task with naturalistic stimuli one day and two 
sessions with abstract stimuli on a separate day. The order of stimulus 
type (abstract and naturalistic) was randomly determined for each 
participant. Each session lasted about 30 min and consisted of 288 
choice trials that were interleaved with 8 estimation bouts presented 
after trials 22, 43, 65, 86, 144, 216, 259, and 288 of the choice task. 

In each trial of the choice task, the subjects were presented with a 
pair of stimuli and were asked to choose the stimulus that they believed 
would provide the most reward (Fig. 1a). The chosen stimulus was 
rewarded (independently of the other presented object) based on its 
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assigned reward probability (Fig. 1d). Of the two features in each sti-
mulus, one feature was partially informative of reward probability as-
sociated with the stimuli (e.g., shoe type [T] in the left panel and color 
[C] in the right panel of Fig. 1d), while the other feature was not. 
Hence, stimulus reward probability could not be determined by com-
bining the reward probability assigned to individual features, resulting 
in a moderately non-generalizable environment. For example, while 
stimuli containing T3 feature were overall more rewarding than objects 
containing T2 feature (left panel in Fig. 1d), stimulus C1T3 was less 
rewarding than stimulus C1T2. In addition, the average reward prob-
ability of stimuli containing a given non-informative feature (in this 
case C1) was equal to 0.5 (the average reward probability for C1T1, 
C1T2, and C1T3 objects was equal to 0.5). We constructed a non-gen-
eralizable reward environment because a fully generalizable environ-
ment is not realistic and could push subjects to solely adopt feature- 
based learning (Farashahi, Rowe, et al., 2017). It is worth noting that 
these reward probabilities were adjusted by a small amount due to a 
limited number of trials for delivering reward with a certain prob-
ability. However, the general structure of reward assignments stayed 
the same throughout the experiment for the experienced reward. 

During each bout of the estimation task, each consisting of 9 trials, 
subjects provided their estimates of reward probability for each in-
dividual stimulus. Possible values for these estimates ranged from 5% to 
95% (the average value of each interval shown in Fig. 1b) in 10% in-
crements. 

2.4. Data analysis and model fitting 

To examine the strategy adopted by subjects to estimate reward 
probabilities associated with different stimuli, we used two methods 
based on subjects' responses in the estimation trials. First, we fit a 
Generalized Linear Model (GLM) on subjects' estimates of reward 
probabilities using the following regressors: the actual reward prob-
ability assigned to each stimulus (the object-based regressor), the re-
ward probability calculated by combining reward probability of in-
dividual features using the Bayes' theorem (the feature-based regressor; 
see Eq. (1) in Farashahi, Rowe, et al., 2017), and a constant. The con-
stant (bias) term in this model quantifies subjects' overall bias in esti-
mating reward probability, and the other two terms determine the in-
fluence of feature-based and object-based strategies on probability 
estimation. We used the ratio of the regression coefficient associated 
with the object-based regressor to the sum of the regression coefficients 
associated with the object-based and feature-based regressors to 
quantify the relative weight of object-based strategy on learning. 

Second, to determine whether subjects' probability estimates were 
closer to estimates based on the feature-based or object-based strategy, 
we computed the correlation between subjects' estimates and the actual 
reward probability assigned to each stimulus as well as subjects' esti-
mates and the reward probabilities calculated by combining the reward 
probability of individual features using Bayes' theorem. We then used 
the outcome correlation coefficients to determine the fractions of 
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Fig. 1. Reward probabilities and stimuli used in the experiment. (a) Timeline of the choice trials. In each trial, subjects chose between two options (i.e., shoes that 
differed in type and color, or two shapes that differed in shape and color) and were provided with feedback on the chosen option. Reward or no reward is indicated by 
yellow and grey rings, respectively. (b) A sample estimation trial. In each estimation trial, subjects estimated the probability of reward associated with a given 
stimulus by pressing one of ten keys on the keyboard associated with probability ranging from less than 10% to more than 90%. (c) Two sets of stimuli used in the 
experiment comprised of naturalistic stimuli with two task-relevant features (C: color; T: type). The order in which each set of stimuli were assigned to two 
experimental sessions was pseudo-randomized across subjects. (d) Stimulus-reward associations. Two sets of reward probabilities were assigned to the two sets of 
stimuli shown in (b). For each set of stimuli, only one feature was informative. An informative feature indicates that the average reward probability would change as 
a function of that feature. Importantly, reward probabilities assigned to the shoes could not be determined by combining the reward probability of individual features 
and thus, the reward environment was non-generalizable. Numbers in parentheses show the actual probabilities of reward obtained on each stimulus (by the subjects) 
due to limited resolution for reward assignment. For the set on the left, shoe type was on average informative about reward (average probability of reward = {0.36, 
0.5, 0.63}), whereas color was not informative of reward probability (average probability of reward = {0.5, 0.5, 0.5}). The opposite is true for the set on the right. (e) 
The sets of possible patterns (left set) and shapes (right set) used in building abstract stimuli. For each session of the experiment, only three of these shapes were used 
for a given subject (randomly chosen without replacement). Other aspects of the task and reward probabilities were similar for abstract stimuli and naturalistic 
stimuli. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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subjects whose estimates follow the feature-based or object-based 
learning strategy more strongly in each condition or over time. That is, 
each subject was assigned as a feature-based or object-based learner 
based on comparing the correlation coefficients mentioned above. 

In addition, we fit two GLMs to test the effect of stimulus type 
(abstract vs. naturalistic), time (trial number), and the interaction of 
stimulus type with time. First, we performed a logistic regression ana-
lysis to predict the fraction of subjects whose estimates were more 
correlated with actual reward probabilities than reward probabilities 
calculated based on features and subjects' estimates of reward prob-
abilities, using time and stimulus type as independent variables. 
Second, we fit a GLM on the difference between two correlation coef-
ficients: the correlation between subjects' estimates and object-based 
predictions, and the correlation between subjects' estimates and fea-
ture-based predictions. The regressors in this model were time (trial 
number) and stimulus type (natural or abstract stimulus). For both 
models, we also considered the interaction of time and stimulus type. 

To estimate the time course of performance as well as the time 
course of relative weight and fraction of subjects, we fit data using an 
exponential function based on the following equation: 

= ( )y t y y y exp( ) ( )ss ss
t

0 (1) 

where y0 and yss are the initial and steady-state values of performance, τ 
is the time constant for approaching steady state, and t represents the 
trial number in a session. 

Finally, we also used six different reinforcement learning (RL) 
models based on object-based or feature-based learning strategies to fit 
individual subjects' choice behavior in order to identify the learning 
strategy adopted by each subject (see below for more details). These 
models were fit to experimental data by minimizing the negative log 
likelihood (LL) of the predicted choice probability given different model 
parameters using the ‘fminsearch’ function in MATLAB (MathWorks, 
Inc., Natick, MA). To avoid finding local minima for the fit of experi-
mental data, we repeated fitting of each dataset with at least 10 dif-
ferent sets of initial parameters and picked the best fit. Based on the 
examination of the fitting results, we found 10 initializations to be 
sufficient to avoid local minima. We performed model comparison 
using both Akaike information criterion (AIC) and Bayesian informa-
tion criterion (BIC). The smaller value for each measure indicates a 
better fit of choice behavior. 

In addition, to compare the ability of different models in fitting 
choice behavior over time, we also used AIC and BIC per trial 
(Farashahi et al., 2018), denoted as AICp and BICp: 

= +A C t LL t k NI ( ) 2 ( ) 2 /p trials (2)  

= +BIC t LL t klog N N( ) 2 ( ) 2 ( )/p trials trials (3) 

where k indicates the number of parameters in a given model, t re-
presents the trial number, LL(t) is the log-likelihood in trial t, and Ntrials 

is the number of trials in the experiment. The logic behind these defi-
nitions is that penalties included in AIC and BIC are based on the sum of 
the log likelihoods over all trials (data), and thus, by dividing the 
penalty terms by the number of trials we ensure that the sum of AICp(t) 
and BICp(t) over all trials would be equal to AIC and BIC, respectively. 
The smaller values for these measures indicate a better fit of choice 
behavior. As we show here, these measures can be used to detect a 
transition between feature-based and object-based learning. 

Finally, to confirm our results based on AIC and BIC, we applied the 
variational Bayesian model selection (BMS) approach in order to 
identify the most likely models that could account for our data. 
Specifically, the BMS approach treats different models as random 
variables and estimates the parameters of a Dirichlet distribution, 
which describes the probabilities from which models are sampled 
across all subjects. These probabilities translate to the probability of 
one model being more likely than any other model (Stephan, Penny, 
Daunizeau, Moran, & Friston, 2009). To avoid overfitting of data and 

reducing the effect of outliers, we randomly sampled 80% of the data to 
estimate the likelihoods and repeated this procedure 50 times to cal-
culate the average likelihood of all models. All behavioral analyses and 
model fitting were done using custom codes written in MATLAB 2018a 
(MathWorks, Inc.). 

2.4.1. Object-based RL models 
Using standard RL models (Sutton & Barto, 1998), the reward value 

of each stimulus was estimated based on reward feedback following the 
subjects' choice in each trial. In the context of this study, reward value 
is equal to the reward probability associated with each stimulus. We 
fitted two types of models, referred to as uncoupled object-based RL and 
coupled object-based RL. In the uncoupled object-based RL, only the 
reward value of the chosen object was updated in each trial. This up-
date was done via separate learning rates for rewarded or unrewarded 
trials using the following equation: 

+ = + =V t V t V t if r t( 1) ( ) (1 ( )), ( ) 1choS choS rew choS

+ = =V t V t V t if r t( 1) ( ) ( ( )), ( ) 0choS choS unr choS (4) 

where t represents the trial number, VchoS is the estimated reward value 
of the chosen stimulus, r(t) is the trial outcome (1 for a rewarded out-
come, 0 for an unrewarded outcome), and αrew and αunr are the learning 
rates for rewarded and unrewarded trials. The value of the unchosen 
stimulus is not updated in this model. 

In the coupled object-based RL, reward values of both stimuli pre-
sented in a given trial were updated, but in opposite directions (if the 
subject incorrectly assumes that reward assignments on the two stimuli 
are anti-correlated). That is, while the reward value of the chosen ob-
ject was updated based on Eq. (4), the value of the unchosen stimulus 
was updated based on the following equation: 

+ = =V t V t V t if r t( 1) ( ) ( ( )), ( ) 1uncS uncS rew uncS

+ = + =V t V t V t if r t( 1) ( ) (1 ( )), ( ) 0uncS uncS unr uncS (5) 

where VuncS is the estimated reward value of the unchosen stimulus. 
The estimated value functions were then used to compute the 

probability of choosing between the two stimuli in a given trial based 
on a logistic function: 

= +logit P t V t V t bias( ) ( ( ) ( ))/L L R (6) 

where PL is the probability of choosing the stimulus presented on the 
left, VL and VR are reward values of the stimuli presented to the left and 
right, respectively, bias measures a response bias toward the left option 
to capture the subject's location bias, and σ is a parameter measuring 
the level of stochasticity in decision-making processes. 

2.4.2. Feature-based RL models 
In this set of models, reward value of each stimulus is computed by 

combining reward values of the features of that object, which are es-
timated from reward feedback using a standard RL model. The updating 
rules for the feature-based RL models are identical to the object-based 
RLs described above except that the reward value of the chosen (un-
chosen) stimulus is replaced by reward values of the features of the 
chosen (unchosen) stimulus. 

As with the object-based RL models, the probability of choosing a 
stimulus is determined based on the logistic function of the difference 
between the estimated values for the stimuli presented: 

= + +
logit P t

w V t V t w V t V t bias
( )

( ( ) ( )) ( ( ) ( ))
L

shape shapeL shapeR color colorL colorR

(7) 

where VshapeL (VcolorL) and VshapeR (VcolorR) are reward values associated 
with the shape (color) of the left and right stimuli, respectively, bias 
measures a response bias toward the left option to capture any location 
bias, and wshape and wcolor determine the influence of the two features on 
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the final choice as well as the overall stochasticity in choice (larger 
values of weights correspond to smaller stochasticity in choice). Note 
that these weights can be assumed to be learned over time through 
reward feedback (as in our models; see RL models with decay below) or 
could reflect differential processing of the two features due to attention. 

2.4.3. RL models with decay 
Additionally, we investigated the effect of “forgetting” reward va-

lues of the unchosen (or not-presented) stimuli or features by introdu-
cing a decay in reward values. This feature has been shown to capture 
some aspects of learning (Ito & Doya, 2009), especially in multi-di-
mensional tasks. More specifically, reward values of the unchosen or 
not-presented stimuli or features decayed to 0.5 with a rate of d 
(0  <  d  <  1) as follows: 

+ =V t V t d V t( 1) ( ) ( ( ) 0.5) (8) 

where t represents the trial number and V is the estimated reward value 
of an unchosen stimulus or feature. 

2.4.4. Hybrid RL model 
To show that AICp(t) and BICp(t) can be used to detect a transition 

between feature-based and object-based learning, we performed addi-
tional simulations using a hybrid RL model. In this model, the sub-
jective value of each option is the weighted sums of two sets of values: 
values based on a feature-based RL model with decay and values based 
on an object-learning RL model with decay. As a result, the probability 
of choosing between the two stimuli is equal to: 

= + +
logit P t

w t V t V t V t V t

w t V t V t

( )
( )(( ( ) ( ))/2 ( ( ) ( ))/2)

(1 ( ))( ( ) ( ))
shape shap color color

L

L eR L R

L R (9) 

where w(t) is the relative weight of the object-based to the feature- 
based component. The relative weight of the object-based to feature- 
based component monotonically increases over time as follows: 

= ( )w t w w w exp( ) ( )ss ss
t

0 (10) 

where w0 and wss are the initial and steady state values, and τ is the time 
constant. We set the w0, wss, τ, αrew, and αunr to 0.3, 0.7, 100, 0.2, and 
0.1, respectively, to match the observed choice behavior of the subjects 
in our experiments. We used this hybrid model to simulate choice be-
havior in our experiment with the same task parameters used for sub-
jects. 

3. Results 

3.1. Effects of stimulus type on performance 

We first examined performance (probability of choosing the more 
rewarding stimuli) to determine whether participants were able to 
perform the choice task correctly. We found that in choice trials, the 
average performance was significantly above chance level (abstract 
stimuli: mean  ±  std = 0.60  ±  0.08; naturalistic stimuli [first subject 
cohort]: mean  ±  std = 0.61  ±  0.05; naturalistic stimuli [second 
cohort of subjects]: mean  ±  std = 0.62  ±  0.07). Performance in each 
cohort of subjects and across all subjects quickly increased and pla-
teaued after about 100 trials (Fig. 2a, d, g). These results demonstrate 
that participants were engaged in the task and were able to select the 
stimulus with a higher probability of reward in most trials. 

We then compared the dynamics of learning for naturalistic and 
abstract stimuli by fitting the time course of performance with an ex-
ponential function (see Materials and methods). We found that for the 
second cohort of subjects who performed the task with both naturalistic 
and abstract stimuli, the performance reached its steady-state at a faster 
rate for the naturalistic rather than abstract stimuli (naturalistic: τ = 52 
trials, CI = [31, 62]; abstract: τ = 85 trials, CI = [76, 94]). However, 

the steady-state performance was not significantly different between 
the two types of stimuli in this cohort of subjects (0.65 and 0.63 for 
abstract and naturalistic stimuli, respectively; Fig. 2a, d). 

We found similar results when considering data from both cohorts 
of subjects. More specifically, the subjects reached the steady-state 
performance at a faster rate when learning about naturalistic stimuli 
(naturalistic: τ = 60 trials, CI = [49, 71]; abstract: τ = 85 trials, 
CI = [75, 95]), whereas the steady states were not different between 
the two types of stimuli (equal to 0.64 and 0.65 for naturalistic and 
abstract stimuli, respectively; Fig. 2g). 

Finally, we also fitted a Generalized Linear Model (GLM) on the 
overall performance in order to test for possible transfer of knowledge 
between the two sessions of the experiment. However, this analysis did 
not reveal any effect of stimulus type (abstract vs. naturalistic stimuli) 
or session number (first vs. second) on performance. 

3.2. Subjects' estimates reveal the effects of stimulus type on learning 
strategy 

Next, we used two GLMs to examine the effects of stimulus type 
(abstract vs. naturalistic), time (trial number), and their interaction on 
the subjects' probability estimates throughout the experiments (see  
Materials and methods). First, we performed a logistic regression ana-
lysis on the fractions of subjects whose estimates were more correlated 
with actual reward probabilities than reward probabilities calculated 
based on features and subjects' estimates of reward probabilities. 
Second, we used a multiple regression model to predict the difference in 
the correlations of subjects' estimates and object-based predictions and 
subjects' estimates and feature-based predictions. Using these analyses, 
we found significant effects of time and stimulus type, suggesting an 
overall larger value for abstract than naturalistic stimuli and an in-
crease in the use of object-based strategy over time (Table 1). Ad-
ditionally, we found negative but non-significant regression coefficients 
for the interaction of time and stimulus type in both models. This result 
suggests that learning about abstract and naturalistic stimuli follow 
different time courses. 

To further investigate the possible interaction between stimulus 
type and time, we explored the adoption of the two learning strategies 
over the course of the experiment. First, using estimates of reward 
probabilities, we confirmed the previously observed transition from 
feature-based to object-based learning (Fig. 2b, e). More specifically, 
using a GLM to predict subjects' estimates, we found that for the ab-
stract stimuli, the relative weight of the object-based strategy (i.e., the 
weight of the object-based divided by the sum of the weights for the 
object-based and feature-based strategies) was smaller than 0.5 during 
the initial estimation bouts and gradually increased and became larger 
than 0.5 over time (relative weight for the first two estimation 
bouts = 0.33, 95% CI = [0.24, 0.45], p = 0.04, d = 0.29, N = 40; 
relative weight for the last two estimation bouts = 0.80, 95% 
CI = [0.7, 0.9], p = 0.01, d = 0.38, N = 40; Fig. 2b). We found a 
similar pattern for learning with naturalistic stimuli (relative weight for 
the first two estimation bouts = 0.22, 95% CI = [0.15, 0.29], p = 0.02, 
d = 0.46, N = 40; relative weight for the last two estimation 
bouts = 0.62, 95% CI = [0.55, 0.68], p = 0.03, d = 0.32, N = 40;  
Fig. 2e). This result shows that initially, subjects' estimates of reward 
probabilities were more strongly influenced by the feature-based 
strategy but later on, were more affected by the object-based strategy 
for learning and computing reward probabilities of different stimuli. 

Consistent with these results, correlation analysis revealed that 
during the first two estimation bouts, the probability estimates of less 
than half of the subjects were more correlated with the actual reward 
probabilities than the reward probabilities calculated based on feature 
values, but this fraction increased over time for both abstract stimuli 
(comparison of fractions in first two estimation vs. last two estimation 
bouts: χ2 (1) = 12.25, p = 4.6 × 10−4, N = 40; Fig. 2c) and natur-
alistic stimuli (comparison of fractions in first two vs. last two 
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Fig. 2. Transition from feature-based to object-based learning occurs faster when learning from naturalistic stimuli. (a) The time course of performance for learning 
abstract stimuli. Plotted is the probability of choosing the more rewarding option in each trial (shaded areas indicate s.e.m.). The dotted line shows chance 
performance and the dashed line shows the fit of data based on an exponential function. The red and blue solid lines show the maximum performance using the 
feature-based and object-based RLs, respectively, assuming that the decision maker selects the more rewarding option based on a model approach in every trial. 
Arrows mark the locations of estimation bouts throughout a session. (b) The time course of the strategy used to estimate reward probabilities based on fitting subjects' 
estimates of reward probabilities. Plotted is the relative weight of object-based to the sum of the object-based (in red) and feature-based terms and explained variance 
in estimates (R2, black curve) over time. The error bars demonstrate the confidence interval and the dashed lines show extrapolation based on an exponential fit. (c) 
The fraction of subjects who showed a stronger correlation of probability estimates with actual reward probabilities than with the probabilities estimated using 
reward probabilities of stimuli's features. The dashed line shows extrapolation based on an exponential fit. (d–f) Similar to panels a–c but for learning from 
naturalistic stimuli in the same cohort of subjects. (g–i) Similar to panels a–c but for learning from naturalistic stimuli across all subjects (first and second cohorts of 
subjects). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
The effects of time and stimulus type on subjects' estimates of reward probabilities. Reported are the values of regression coefficients (mean  ±  s.e.m.) and 
corresponding p-values for a logistic regression model that predicts the fraction of subjects whose estimates were more strongly correlated with object-based than 
feature-based predictions (top), and a linear regression model that predicts the difference between the correlation of subjects' estimates and object-based predictions 
and the correlation of subjects' estimates and feature-based predictions. In both models, we used stimulus type, time, and the interaction of stimulus type with time as 
regressors.      

Independent variables for predicting fraction of subjects Stimulus type (abstract vs. naturalistic) Time (trial #) Stimulus type × time  

Regression coefficients and corresponding p-values 0.37  ±  0.13 
p = 0.016 

0.004  ±  0.001 
p = 0.013 

−0.004  ±  0.0004 
p = 0.09       

Independent variables for predicting difference in correlation of subjects' estimate with object- 
based vs. feature-based learning 

Stimulus type (abstract vs. 
naturalistic) 

Time (trial #) Stimulus type × time  

Regression coefficients and corresponding p-values 0.26  ±  0.11 
p = 0.033 

0.003  ±  0.001 
p = 0.025 

−0.004  ±  0.0005 
p = 0.11    
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estimation bouts: χ2 (1) = 5.85, p = 0.015, N = 40; Fig. 2f). 
We found similar results when considering data from all subjects 

who performed the learning task with naturalistic stimuli (first and 
second cohorts of subjects). The relative weight of the object-based 
strategy was smaller than 0.5 during the initial estimation bouts but 
gradually increased and became larger than 0.5 (relative weight for the 
first two estimation bouts = 0.35, 95% CI = [0.31, 0.40], p = 0.02, 
d = 0.41, N = 76; relative weight for the last two estimation 
bouts = 0.64, 95% CI = [0.62, 0.69], p = 0.01, d = 0.58, N = 76;  
Fig. 2h). Additionally, the probability estimates of less than half of the 
subjects were more correlated with the actual reward probabilities than 
the reward probabilities calculated based on features, and this fraction 
increased over time (comparison of fractions in first two vs. last two 
estimation bouts: χ2 (1) = 47.04, p = 7.0 × 10−12, N = 76; Fig. 2i). 

To identify the similarities and differences between learning about 
naturalistic and abstract stimuli, we next compared our measures 
within participants in the second cohort of subjects. Comparison be-
tween the relative weights of object-based strategy on estimated reward 
probabilities did not reveal any significant difference between the in-
itial estimation bouts (difference in the relative weight of object-based 
strategy between abstract and naturalistic stimuli = 0.11, 95% 
CI = [−0.02, 0.23], p = 0.11, d = 0.12, N = 40). However, we found 
the relative weight of the object-based strategy during the last two es-
timation bouts to be significantly larger for abstract than naturalistic 
stimuli (difference = 0.18, 95% CI = [0.09, 0.26], p = 0.03, d = 0.26, 
N = 40). Comparison between the relative weights of the object-based 
term on probability estimates during the first two estimation bouts 
revealed that subjects' initial strategy was not different between 
learning about naturalistic and abstract stimuli (difference in the re-
lative weight of the object-based strategy between abstract and natur-
alistic stimuli = 0.02, 95% CI = [−0.07, 0.11], p = 0.27, d = 0.09, 
N = 76). Moreover, the relative weight of the object-based strategy 
during the last two estimation bouts was larger for abstract than for 
naturalistic stimuli (difference = 0.15, 95% CI = [0.03, 0.23], 
p = 0.04, d = 0.13, N = 76). 

By examining the fraction of subjects whose reward-probability 
estimates were more correlated with actual reward probabilities asso-
ciated with the stimuli than the reward probabilities calculated based 
on features, we found that in the early stages of learning, a larger 
fraction of subjects followed an object-based strategy for naturalistic 
rather than abstract stimuli (the difference in fractions between nat-
uralistic and abstract stimuli during the first two estimation 
bouts = 0.21, χ2 (1) = 6.25, p = 0.01, N = 40). We also found that 
toward the end of the experiment, a slightly larger proportion of sub-
jects provided probability estimates that were more strongly correlated 
with the object-based strategy when learning about abstract stimuli (the 
difference in fraction between naturalistic and abstract stimuli during 
the last two estimation bouts = −0.19, χ2 (1) = 7.34, p = 0.0016, 
N = 40). 

These results hold when considering data from both cohorts of 
subjects. That is, in the early stages of learning, a larger fraction of 
subjects followed the object-based strategy for naturalistic stimuli (the 
difference in fraction between naturalistic and abstract stimuli during 
the first two estimation bouts = 0.23, χ2 (1) = 8.65, p = 0.0034, 
N = 76). We also confirmed that toward the end of the experiment, a 
slightly larger fraction of subjects provided probability estimates that 
were more strongly correlated with the object-based strategy when 
learning about abstract stimuli (difference in fractions between natur-
alistic and abstract stimuli during the last two estimation 
bouts = −0.16, χ2 (1) = 9.34, p = 0.0029, N = 76). 

Together, the results from the above analyses indicate that subjects 
transitioned from primarily using feature-based learning to object- 
based learning for both types of stimuli. An interesting difference be-
tween learning about abstract and naturalistic stimuli was that, even 
though the subjects initially adopted a more object-based strategy when 
learning about naturalistic stimuli, they reached a higher level of 

object-based learning for abstract stimuli. 
Having these results, we next compared the rate of transition from 

feature-based to an object-based strategy for naturalistic and abstract 
stimuli using our measures. First, we fit the relative weight of the ob-
ject-based term over time (based on an exponential function) and found 
that subjects transitioned to object-based learning at a faster rate when 
learning about naturalistic stimuli (τ = 227, 85 and 65 trials for ab-
stract and naturalistic stimuli in the second cohort of subjects and 
naturalistic stimuli across all subjects, respectively; Fig. 2b, e, h). 
Moreover, to estimate errors related to the reported time constants, we 
fitted a GLM to individual subjects' estimates of reward probabilities. 
Consistent with our previous results, we found that subjects transi-
tioned to object-based learning at a faster rate when learning about 
naturalistic stimuli (τ = 216, 95% CI = [277, 158], 93, 95% 
CI = [132, 54], and 52, 95% CI = [24, 79] trials for abstract and 
naturalistic stimuli in the second cohort of subjects and naturalistic 
stimuli across all subjects, respectively). However, we note that fitting 
GLM this way, as opposed to fitting GLM to all subjects' estimates of 
reward probabilities, is prone to serious overfitting (3 parameters for 
fitting 9 data points). 

Similarly, the fraction of subjects with a stronger correlation be-
tween estimated reward probabilities and actual reward probabilities 
reached a plateau faster for naturalistic stimuli (τ = 207, 80, and 76 
trials for the time constant of abstract and naturalistic stimuli in the 
second cohort of subjects and naturalistic stimuli across all subjects, 
respectively; Fig. 2c, f, i). Together, results based on different types of 
measures illustrate that subjects learned at a faster rate when faced with 
naturalistic stimuli compared to abstract stimuli. 

Next, to assess if feature identity impacted learning, we compared 
the subjects' assignment of reward probabilities between the two task- 
relevant features: color and shoe type. This is because color is a low- 
level visual feature compared to shoe type, which is a high-level con-
cept. Therefore, we compared learning between sessions when either 
color or shoe type was the informative feature within individual sub-
jects (each subject performed the task twice, once with color and once 
with shoe type as the informative feature). However, we did not find 
any significant difference in the relative weight of the object-based term 
between color or shoe type as the informative feature (the difference in 
estimated weights between color and shoe type = 0.05, CI = [−0.12, 
0.15]; Fig. 3a). Moreover, when comparing the fraction of subjects 
whose reward-probability estimates were more correlated with actual 
reward probabilities than reward probabilities calculated based on 
features, we did not find any evidence for the type of informative fea-
ture in any of the estimation bouts (the difference in the fraction of 
subjects for color and shoe type = 0.10, χ2 (1)  <  2.51, p  >  0.11;  
Fig. 3b). 

3.3. Choice behavior reveals the effects of stimulus type on learning strategy 

To identify the learning strategy adopted by the subjects during 
choice trials, we fit the choice data using six different RL models that 
relied on either object-based or feature-based approaches for updating 
reward probabilities. Specifically, in uncoupled feature-based RL 
models, the features associated with the selected stimulus are updated. 
In coupled feature-based RL models, however, the features associated 
with both the chosen and unchosen stimuli are updated (with the as-
sumption of anti-correlated reward assignment). Similarly, in un-
coupled object-based models, only the reward probability of the se-
lected stimulus is updated, whereas the reward probabilities of both 
chosen and unchosen stimuli are updated in coupled object-based 
models. In RL models with decay, the reward probabilities of unchosen 
stimuli or features are lost over time (see Materials and methods). For 
model comparison, we used goodness-of-fit measures in terms of AIC 
and BIC. 

We found the best object-based and feature-based models to be 
those that incorporate the decay in value estimates over time (Table 2). 
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More importantly, the object-based with decay model provided a sig-
nificantly better fit than the feature-based with decay model when 
learning about naturalistic stimuli across all subjects and abstract sti-
muli in the second cohort of subjects (naturalistic stimuli: two-sided 
sign-rank test; BIC [feature-based with decay] − BIC [object-based with 
decay]: mean  ±  s.e.m. = 45.7  ±  18.2, p = 0.02, N = 38, d = 0.65; 
AIC [feature-based with decay] − AIC [object-based with decay]: 
mean  ±  s.e.m. = 44.1  ±  18.1; p = 0.02, N = 38, d = 0.62, abstract 
stimuli: BIC [feature-based with decay] − BIC [object-based with 
decay]: mean  ±  s.e.m. = 48.4  ±  19.1, p = 0.04, N = 20, d = 0.38; 

AIC [feature-based with decay] − AIC [object-based with decay]: 
mean  ±  s.e.m. = 47.4  ±  19.2; p = 0.04, N = 20, d = 0.35). 

Additionally, we applied the variational Bayesian model selection 
(BMS) approach to identify the most likely models that could account 
for our data. We found the most likely object-based and feature-based 
models to explain the data were those incorporating the decay. More 
importantly, the object-based with decay model was more likely than 
the feature-based with decay model (Fig. 4a–b). Therefore, across all 
models, choice behavior was best accounted for by an object-based RL 
with decay, suggesting that subjects learned the reward probability of 
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Fig. 3. Transition from feature-based to object-based 
learning was not different between the sessions with color 
and shoe type as the informative features. (a) Plotted is 
the relative weight of object-based to the sum of the ob-
ject-based and feature-based terms for sessions with color 
and shoe type as the informative features. Dashed lines 
show the fit of data based on an exponential function that 
allows extrapolation over the entire course of the ex-
periment. (b) The fraction of subjects who showed a 
stronger correlation between reward-probability esti-
mates and actual reward probabilities than the prob-
abilities estimated using reward values of features for 
sessions with color and shoe type as the informative fea-
tures. 

Table 2 
Comparison of the goodness-of-fit measures based on all trials. The object-based model with decay provides the best fit to the choice data from all trials. Reported are 
three measures for the goodness-of-fit, negative log likelihood (−LL), Akaike information criterion (AIC), and Bayesian information criterion (BIC) averaged over 
subjects (mean  ±  s.e.m.) for three feature-based RLs and their object-based counterparts when learning from naturalistic stimuli across all subjects (a) and abstract 
stimuli in the second cohort of subjects (b). A smaller value indicates a better fit. The model providing the best fit in a given experiment and its object-based or 
feature-based counterpart are highlighted in cyan and orange, respectively. Each feature-based RL was compared with its object-based counterpart using a two-sided, 
sign-rank test, and (*) indicates the difference is significant at p  <  0.05. 

a)

Naturalistic stimuli

Model
Coupled 

feature-based

Uncoupled 

feature-based

Feature-based 

with decay

Coupled 

object-based

Uncoupled 

object-based

Object-based 

with decay

# pars. 5 5 6 4 4 5

-LL 363.1±8.5 370.9±9.5 351.5±9.0 359.5±8.9 363.5±9.8 330.4±12.1*

AIC 736.1±16.9 751.8±19.1 715.0±18.0 727.0±17.8 734.9±18.6 670.9±24.2*

BIC 744.2±16.9 759.9.0±19.1 724.7±18.0 733.5±17.8 741.4±18.6 679.0±24.2*

b)

Abstract stimuli

Model
Coupled 

feature-based

Uncoupled 

feature-based

Feature-based 

with decay

Coupled 

object-based

Uncoupled 

object-based

Object-based 

with decay

# 

pars.
5 5 6 4 4 5

-LL 365.7±10.1 372.0±10.4 354.8±9.9 361.4±8.9 367.6±11.0 332.1±11.6*

AIC 741.4±20.2 754.1±20.8 721.7±18.8 730.8±17.8 743.3±22.1 674.3±23.2*

BIC 746.4±20.2 759.1±20.8 727.7±18.8 734.8±17.8 747.3±22.1 679.3±23.2*
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the chosen stimulus and forgot the reward probability of the unchosen 
and non-presented stimuli. These results illustrate that overall subjects' 
choice behavior was more compatible with an object-based strategy for 
learning. 

To capture a potential change in the best model that accounted for 
choice data over time, we also computed the BICp and AICp over time 
for the best object-based and feature-based models (see Materials and 
methods). We found that the object-based model provided a better fit 
mainly in the later stage of the experiment (Fig. 4c, d). The difference 
between the goodness-of-fit for the object-based and feature-based 
models was significantly different between early (1–50) and late 
(50–288) trials (Δ BICp = Δ AICp = Δ (−LL): mean  ±  std = 0.14  ±  
0.09; two-sided sign-rank test; p = 0.03, d = 0.94, N = 38). We note 

that the boundary for early versus late trials (at 100) was selected based 
on the time course of performance (Fig. 2a, d, g) but that the reported 
difference was significantly larger than zero (p  <  0.05) for any 
boundary values between 80 and 120 as well. However, comparing 
naturalistic with abstract stimuli (Fig. 4c, d), the difference in goodness- 
of-fit for the object-based and feature-based models between early and 
late trials was not significant (Δ BICp = Δ AICp = Δ (−LL): mean  ±  
std = 0.03  ±  0.07; two-sided rank-sum test; p = 0.28, d = 0.25, 

N = 58). This observation can be explained by the fact that models are 
fit to the choice data from all trials. Therefore, fitting provides a set of 
parameters that captures choice behavior the best on average, and 
therefore change in behavior is not captured best in this measure. To-
gether, results based on fitting choice behavior illustrate that similar to 
abstract stimuli, subjects transitioned from feature-based to object- 
based strategy during the time course of the experiment. 

We have previously used LL(t), AICp(t), and BICp(t) to compare 
competing models in terms of their ability to capture choice after a 
sequence of trials (Farashahi, Donahue, et al., 2017) and at a given 
point in time during a session (Farashahi, Rowe, et al., 2017, Farashahi 
et al., 2018). Nonetheless, we performed additional simulations to show 
that these measures can capture a transition between feature-based and 
object-based learning. More specifically, we simulated 50 instances of 
choice behavior in a hybrid model that includes both feature-based 
learning with decay and object-based learning with decay components 
and in which the relative weight of these two components continuously 
changes over time (see Materials and methods for more details). We 
then fit the simulated choice data using an object-based model with 
decay and a feature-based model with decay and computed BICp(t) for 
fit based on these two models. We found that BICp(t) can detect the 
transition from feature-based to object-based learning at about the same 
time point (~70 trials) as when the object-based component became 
stronger than the feature-based component (i.e., when w(t)  >  0.5;  
Fig. 5). This result shows that BICp (and similarly AICp) can detect a 

transition in the learning strategy over time. 

4. Discussion 

In this study, we investigated learning about reward value of nat-
uralistic stimuli based on feedback in multi-dimensional reward en-
vironments. We confirmed our previous observations using abstract 
stimuli (Farashahi, Rowe, et al., 2017) but also found significant dif-
ferences between learning naturalistic and abstract stimuli. More spe-
cifically, our subjects initially adopted a feature-based learning strategy 
more strongly and slowly transitioned to an object-based strategy as 
they gained more experience through reward feedback. However, we 
found that compared with abstract stimuli, subjects initially adopted a 
less feature-based strategy and transitioned to an object-based strategy 
faster when learning about naturalistic stimuli. These findings validate 
our previous results that feature-based learning is a general initial 
strategy for both learning about reward value of multi-dimensional 
stimuli and tackling the curse of dimensionality. 

RL theories have been widely adopted as the main framework to 
understand reward learning in human and non-human primates. 
However, it has been suggested that other cognitive processes such as 
working memory (WM) play a role in learning (O'Reilly & Frank, 2006). 
For example, WM capacity has been shown to be a limiting factor for 
learning from reward feedback (Collins et al., 2017; Collins & Frank, 
2012). Moreover, although it is generally accepted that WM capacity is 
discrete and limited (Awh et al., 2007; Cowan, 2001; Fukuda et al., 
2010; Miller, 1956; Rouder et al., 2008), a series of recent studies has 
shown that the capacity of WM is continuous (Alvarez & Cavanagh, 
2004; Bays, Catalao, & Husain, 2009; Bays & Husain, 2008; Ma et al., 
2014) and can be almost unlimited for naturalistic objects (Brady et al., 
2016). Based on the aforementioned findings, our observed faster rate 
of learning for naturalistic stimuli could be attributed to an increase in 
WM capacity for these stimuli. 

Studies of interactions between WM and learning have also pointed 
to the influence of individual differences in WM capacity on the balance 
between model-free and model-based learning (Etkin et al., 2016; Otto 
et al., 2013; Schad et al., 2014; Wills et al., 2011). Although these 
suggest that WM capacity might affect the speed of alternation between 
learning strategies, it is still unclear how WM capacity influences 
learning strategies. Here, we find that naturalistic stimuli bias the initial 
learning strategy toward object-based learning and result in a faster 
transition to object-based learning. 

Additionally, naturalistic stimuli are more familiar and could be 
perceived as more salient than abstract stimuli (Battistoni et al., 2020;  
Kaiser et al., 2016; Thorpe et al., 1996), and thus, could result in a 
strong bias toward object-based learning. Nonetheless, we find that the 
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Fig. 4. Goodness-of-fit based on two best models shows similar transitions from feature-based to object-based learning for both naturalistic and abstract stimuli. (a–b) 
Likelihood of different strategies adopted by humans when learning about naturalistic stimuli across all subjects (a) and abstract stimuli in the second cohort of 
subjects (b). Fitting choice behavior shows that subjects' choice behavior was more likely to be explained by an object-based learning strategy. (c–d) Plotted is the 
average BIC per trial across all subjects based on the feature-based model with decay, the object-based RL model with decay, and the difference between object-based 
and feature-based models when learning from naturalistic stimuli across all subjects (c) and abstract stimuli in the second cohort of subjects (d). We did not observe 
any significant difference between learning about naturalistic and abstract stimuli based on the goodness-of-fit measure. 
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heuristic feature-based strategy, which provides an approximation for 
reward value based on features, is still adopted as the initial learning 
strategy when learning about naturalistic stimuli. Learning about fea-
tures has been shown to enhance learning speed (Gigerenzer & 
Goldstein, 1996; Jocham et al., 2016) and allows for generalization of 
values (Kahnt et al., 2012; Kahnt & Tobler, 2016). Together, these 
findings suggest that, when adopting learning strategies, the demand 
for adaptability (Farashahi, Rowe, et al., 2017; Farashahi, Donahue, 
et al., 2017; Farashahi et al., 2019; Soltani & Izquierdo, 2019) and 
tackling the curse of dimensionality could be the more important fac-
tors than the saliency of naturalistic stimuli. 

Our experimental design has a few limitations that can be addressed 
in future experiments. First, only a specific type of object (i.e., shoe) 
was used as naturalistic stimuli, which might have been more familiar 
to some subjects than others. Familiarity (e.g., repeated exposure to the 
same stimuli) has been shown to enhance the WM performance (Olson 
et al., 2005; Olsson & Poom, 2005). Measuring subjects' degree of fa-
miliarity to establish a baseline measure with given stimuli can be used 
in future studies to understand the effect of familiarity on learning from 
reward feedback. Another limitation of our study is the difference be-
tween the two task-relevant features: color is a low-level visual feature 
whereas shoe type is more high-level and conceptual. Although we did 
not find any difference between learning depending on the informative 
feature, the difference between our two task-relevant features could 
potentially bias learning toward a feature-based strategy because of 
recent studies suggesting that existing semantic knowledge impacts WM 
capacity (Bower et al., 1975; Brady et al., 2019; Konkle et al., 2010;  
McWeeny et al., 1987). 

Finally, a novel aspect of our work is the use of naturalistic stimuli 
to study learning because so far only a limited number of studies have 
investigated cognitive processes using such stimuli instead of abstract 
stimuli (Battistoni et al., 2020; Boorman et al., 2016; Brady et al., 2016;  
Hickey & Peelen, 2015; Kaiser et al., 2016; Leong et al., 2017). The lack 
of experiments exploring learning using naturalistic stimuli calls for 
reconsideration of existing findings based on abstract stimuli. 

5. Conclusion 

Here, we aimed to investigate learning about multi-dimensional 
naturalistic stimuli based on reward feedback. Crucially, our study is 
the first to compare response to multi-dimensional naturalistic stimuli 
and abstract stimuli in the context of learning. We demonstrate that 
learning about both types of stimuli involves transition from a feature- 
based to an object-based strategy, however, this transition is faster for 
naturalistic compared to abstract stimuli. Moreover, object-based 
learning is initially adopted more strongly for naturalistic than abstract 
stimuli, whereas the object-based strategy is adopted less for naturistic 
stimuli both overall and at the steady state. Overall, our results suggest 
that although naturalistic stimuli could be perceived as objects more 
strongly, leading participants to use the feature-based strategy less 
often initially and transition faster to object-based learning, the overall 
influence of individual features on learning was stronger for naturalistic 
stimuli. 
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